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The structure of acenaphthylene suggests that degradative addition to monomer may occur during free- 
radical polymerization. We present an analysis, based on the kinetic treatment in an earlier paper, of the 
kinetic data of Romani and Weale 1 on the polymerization of acenaphthylene in toluene at 1 atm pressure. 
Two cases are considered: (i) where the termination coefficient is constant, and (ii) where k t is size-dependent. 
The latter case is appropriate because small radicals are involved; analysis is facilitated by introduction of the 
concept of a 'group-termination-coefficient'. Both treatments lead to results in good agreement with the 
experimental data, which are, therefore, consistent with the occurrence of degradative addition in this 
polymerization. The estimated kinetic parameters have different values in (i) and (ii), notably in that re- 
initiation is important in the latter, but insignificant in the former. Possible techniques for more detailed 
examination of re-initiation are outlined. Molecular weight distributions for the polymerization with 
degradative addition to monomer with cons tan t  k t have been calculated. 

(Keywords: free-radical polymerization; degradative addition; size-dependent termination coefficient; group-termination 
concept; acenaphthylene structure) 

I N T R O D U C T I O N  

Although the free-radical polymerization of acenaph- 
thylene has been known for many years the kinetic 
aspects have received relatively little attention. Romani 
and Weale I made a careful study of the reactions in 
toluene and carbon tetrachloride solutions at 60°C with 
initiation by azobisisobutyronitrile under pressures of 1, 
1400 and 2800 atmospheres. They reported that the 
kinetic behaviour deviated from classical; the initiator 
and monomer exponents were approximately 0.62 and 
0.84, respectively in toluene at 1 atmosphere. This 
behaviour was attributed to degradative transfer to 
monomer,  but no details were given. In the present paper 
we consider the data of Romani and Weale for the 
polymerization in toluene under a pressure of 1 
atmosphere and endeavour to show that they are 
consistent with the occurrence of degradative addition to 
monomer. 

Degradative addition, in its simplest form, involves 
retardation by monomer arising from addition of the 
latter to propagating radicals with formation of a distinct 
radical species of lower reactivity which enters into 
normal termination reactions but does not necessarily re- 
initiate 2'3. Kinetic features associated with this type of 
polymerization have been discussed in an earlier paper 4. 
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For  present purposes two properties of acenaphthylene 
merit consideration. First, the five-membered ring in the 
molecule has significant steric strain which is relieved 
when polymerization occurs through the double bonds in 
the 5-membered rings, giving rise to an unusually high 
heat of polymerization 5-7. Hence one might expect that a 
radical such as (1) formed by addition to C1, would be 
delocalized only to a relatively small extent. Similarly it 
seems unlikely that addition to an aromatic ring, e.g. as in 
(2) would produce a radical showing much delocalization 
into the five-membered ring, although it might be 
delocalized otherwise. Molecular orbital calculations 
confirm and quantify these simple ideas. They show that 
radical addition in general is favoured over hydrogen 
abstraction and reveal many sites of comparable 
reactivity towards an attacking radical. 
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Further, they confirm that radical (2) is much less reactive 
in monomer addition than (1). Some results of the 
calculations are presented in Appendix 2. 
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The behaviour of some aromatic molecules as 
inhibitors of radical chain reactions is indeed well-known. 
Kooyman and Farenhorst 8 studied inhibition of the 
chain-addition of carbon tetrachloride to olefins 9 
and Bagdasar'ian and his colleagues ~° demonstrated 
experimentally that active radicals prefer to add to 
aromatic systems rather than abstract hydrogen, 
producing radicals of low reactivity. These latter authors 
evaluated rate coefficients for inhibition of some free- 
radical polymerizations by aromatic compounds. 

Occurrence of degradative addition in the 
polymerization of acenaphthylene would, therefore, not 
be surprising. For consistency with our earlier paper 4 we 
shall designate the reactive radicals, formed by addition 
at C~ or C 2 by R. (cf. 1) and the relatively inactive 
radicals, arising from addition elsewhere, by S' (2). 

The second characteristic of acenaphthylene which 
must be borne in mind is the very crowded nature of the 
polymer. Story and Canty ~1 studied models of the 
polymers and also characterized polyacenaphthylene 
prepared by ionic polymerization. They proposed the 
formation of iso- and syndio-tactic structures, the former 
rod-like and the latter helical. Some structures could not 
be constructed and so the possibility of self-termination 
arises. In principle, it is possible for (radical) propagation 
to occur until a radical is formed which is unfavourably 
situated for 'normal' propagation. Such a radical might 
constitute a pseudo-S, radical allowing limited 
termination and re-initiation. It would thus seem feasible 
to devise a mechanism for degradative addition based on 
physical factors related to radical occlusion instead of 
inherent differences in radical reactivity. While this 
cannot be discounted for acenaphthylene polymerization 
we believe the former mechanism is more likely in view of 
the kinetic discussion below. 

It is generally believed that the mean bimolecular 
termination coefficient in free-radical polymerization, 
although sensibly constant for large radical sizes, shows a 
significant size-dependence for 'small' radicals (typically 
those with fewer than ~ 100 units), with consequent 
complications of the interpretation of kinetic data ~2. 
Many retarded polymerizations would be expected to 
show complications of this kind, including those studied 
by Romani and Weale 1 which are the subject of this 
paper. Unfortunately, degrees of polymerization were not 
reported by these authors for conditions corresponding to 
those holding in the kinetic runs, but simple 
considerations show that the mean radical sizes lay 
between 20 and 200, i.e. in the range in which the 
termination coefficient is usually size-dependent. Under 
these conditions, therefore, the polymerization of 
acenaphthylene is doubly non-classical. 

GENERAL TREATMENT 

Kinetics of degradative addition 
The kinetic scheme we have used in the earlier paper 4 is 

presented in equation (i) in which the symbols have their 
conventional meanings. In kinetic expressions through- 
out we have omitted brackets from concentration terms 
for clarity. 

initiator--, R o (a) 

R o + M ~ R  1 rate of initiation J (b) 

R,+M--*Rr+ 1 kp (c) 

R ~ + M ~ S , + ,  k~ (d) (1) 

St+ 1 + M ~ R , +  2 kpm (e) 

R,+  lk~-~polymer ] (f) 

lk,+Ss--,polymer ) k t (g) 

~r + gs-*poly mer (h) 

Conventional stationary-state treatment, with the long- 
chain assumption, gives for the rate of polymerization ~o 

, • / d ' ~  1/2 kpmM+(Jk,) 1/2 
( D = K p J V I  . . . .  ~ 1 / 2  ~k,)  (kp,.+ky)M+(. k,) 

(2) 

in which d is the rate of initiation. 
Equation (2) may be recast into the forms (3) and (4), 

which are useful for plotting experimental data 4 

l t M'Jl/2o) l~(.~kt)l/2j kp 1+ ~ , ~  (3) 

(M,~2/2 kl/2"~ -I kp(jl/2 kpm ) 
] = ~ - ~ -  + kT~ ~ (4) 

It is now necessary to consider how expressions (2), (3), 
(4), may be modified to include size-dependent 
termination. 

Radical-size-dependent kt: the 'group-termination 
coefficient' 

A number of attempts have been made ~ 3 to establish a 
theoretical form of the dependence of k, on radical size 
based on diffusion control of the reaction. Clearly an 
expression suitable for use in kinetic schemes is 
particularly desirable and proposals have been 
advanced 14-27, some based on semi-empirical or 
numerical 23 approaches. 

A simple power-law approximation 

k, = k(xy)-b (5) 

where xy is a mean of the two radical sizes x,y and 
k is a constant used by Yasukawa, Takabashi and 
Murakami 17 and by Yasukawa and Murakami ~9 and 
has received considerable attention. The geometric 
mean leads to the simplest calculations 26 because it 
gives rise to factorizable expressions, but on physical 
grounds the harmonic mean appears to be the 
most appropriate simple average 23. Olaj and 
Zifferer 27 have derived some universal relationships 
for arbitrary chain-length dependence of k v 

In this paper we introduce a 'group termination 
coefficient' concept, according to which, as far as the 
termination coefficient is concerned, a group of radicals 
behaves as a single radical of size 7, the number average 
for the group. The group termination coefficient is 
supposed to be proportional to ~-2a, fl being a positive 
exponent, and may be written as 

k ~ -2f l  

where kto is the termination coefficient for radicals of an 
arbitrarily chosen size r o. The rate of termination in a free- 
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radical polymerization is then given by expression (7) 

(7) 

where R; is the concentration of radicals of size r. This is 
clearly an approximation for the more usual type of 
expression based on the geometric mean, according to 
which the rate of termination may be expressed in the 
form 

Its use, involving the replacement of xreBR; by ?-PzR;, 
introduces some error which, however, is not very 
significant for values of /? generally encountered. For 
example, if R; has a simple exponential distribution and 
rbl we find 

Cr-bR, 

L-I-(1-P) 
@CR; 

(9) 

independent of F. A more realistic radical distribution for 
a system with variable k,, holding for second-order 
termination in the absence of chain transfer, is shown in 
equation (10) in which A and p are constants. 

R;=Aexp(-pr’-8) 

For this distribution 

(10) 

Cr-“R; 

I= [WC1 -B))]m{w -a,)l’+0 
F-BCR; 

(11) 

again independent of ?. 
For reasons outlined below we have used the (rather 

large) value /?= 0.16. Olaj and his colleagues23,26*27 have 
favoured B = 0.08. The ratios in equations (9) and (11) are 
equal to 1.122 and 1.137, respectively for p= 0.16, and to 
1.053 and 1.056, respectively for /?=O.OS. Note that for 
p=O termination is classical with constant k, and both 
expressions (9) and (11) reduce to unity. Use of the simple 
group termination coefficient thus introduces errors 
which become more significant as p increases. These 
errors are readily eliminated by inclusion of factors such 
as that in equation (11) during the development2’. We are 
of the opinion that it does not distort the kinetic 
relationships significantly although it may influence the 
parameters. This question is taken up again later. 

Application to kinetic scheme 
In developing expression (2) from the kinetic scheme (1) 

we find that k, enters into three terms 

(According to the arguments presented in our earlier 
paper4, in degradative addition k, may be considered 
independent of the chemical natures of the radicals 

involved.) If k, has a geometric-mean type of size 
dependence, the terms in (12) must be replaced by those in 
(13) in which ktO is the 

(13) 

termination coefficient for radicals of an arbitrarily chosen 
size ro(=so). With the aid of our group-termination 
assumption (equation 6) these expressions become 

respectively, where B =cl$, s = Es,. From Appendix (1) 

we see that, for constan;k, ?=,?&d we assume that this 
holds (at least approximately) under present conditions. 
It follows that by making the substitution fork, shown in 
equation (6) we can apply equation (2) when k, is size 
dependent. For this purpose it is convenient to define a 
factor F(r) as in equation (15) 

?/2 

=F-‘(F) (15) 

or 

F(f)= 1 ’ 
0 r. 

(from equation (6)). 
We thus obtain equations (16), (17) and (18) from 

equations (2), (3) and (4). 

4 I” 

w = kpFM kf, 0 k,FM + (9kJ”’ 

(k,, + k,)FM + (YkJ” (16) 

(17) 

FMy1’2 
(18) 

0 

According to equation (17) a plot of FM9’12/w versus 
FM/Y112 has an intercept ktO12/kp on the FM9”2jo axis, 
so that if measurements of o down to low values of 
M/P’2 are available, or if k, is small (as is usually the 
case) k:y2/kp may thus be evaluated, at least 
approximately. The value may be refined when 
k,,/(.Yk,)“2 becomes known. For this purpose the left 
side of equation (18) is plotted against #“/FM to give a 
straight line having 

slope = k,/k, intercept = i$$ 
f f0 

Hence from equations (17)-(19) the three parameters 
k jktOiz, 

P 
k,/k, and kp,,,Jkp, or their equivalents, may be 
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determined. Equation (19) obviously holds also for 
constant k,(F = 1). 

Numerical values 
In this paper we suppose that k, = k,o for an arbitrary 

standard radical size r o = 50 and/3 = 0.16. This latter is 
consistent with a linear extrapolation to radical sizes 
below 100 of the experimental data of O'Driscoll and 
Mahabadi in their plot of k, versus log(radical size) for 
poly(methyl methacrylate) radicals 28. The value/3 = 0.16, 
corresponding to b = 0.32 in the nomenclature of Olaj and 
colleagues e6'2~, is larger than any used by the latter 
authors, but we wished to employ an extreme value to 
examine the effects on the kinetic behaviour. 

We have found 29 that f, which is necessary for 
evaluating F(f) from equation (15), may be calculated to a 
sufficiently good approximation from the relation (20) 

f - , , c  + ~ = X / M  F(1-/3) coC [_ F2/(1 -/3) (20) 
'~rl/(1 _/3)}2j 

in which X represents a non-degradative transfer 
constant Cx. More accurately,/3 in equation (20) should 
be replaced by a more complicated function u. Thus 

a Cm(rr -- a) + o 2 
u ~ f l  (a) a oCxX/M + a(a + Cm) 

(21) 

(.¢k,o) 1/2 kp., + 
where a = - - k p ~ r O ~ ;  a= kp a (b) 

C,.=kHk p is the degradative 'transfer' constant for 
the monomer. The errors introduced by use of the 
simple relation (20) are not significant for the present 
purposes. These matters will be discussed in a future 
publication 29. 

To examine the possible errors introduced we have 
calculated F in two other ways: (i) F(/5o/2) from equation 
(15) with f replaced by/50/2 (/5o=2O9/J is the number- 
average degree of polymerization in the absence of 
transfer) and (ii) F(/5,/2) from equation (I5) with f 
replaced by/5,/2, where/5, is the number-average degree 
of polymerization in the presence of transfer, calculated 
from /5o by use of the Mayo equation (Appendix 1, 

equation (38). We have assumed that termination occurs 
predominantly by radical combination. F(/5,/2) is 
approximately 5 ~o smaller than the corresponding F(f). 
As expected, F(f) is not very sensitive to small changes in 
f. In polymerizations with constant k,, in the absence of 
transfer, the ratio J/P, is determined simply by the ratio 
combination:disproportionation in the termination 
reaction, but when k, has a size-dependence of the form 
discussed the ratio is also a function of/3 and is somewhat 
larger than with constant k,. Nevertheless approximate 
proportionality between f and /5 remains, even in the 
presence of moderate chain-transfer, as suggested by the 
data in Table I. 

RESULTS AND DISCUSSION 

We have taken the first order coefficient for 
decomposition of azobisisobutyronitrile (3) in toluene at 
60°C to be 1.2 x 10- 5 s- ~ and assumed the efficiency of 
initiation to have the conventional value 0.54 (cf. ref. 2). 
The rate of initiation is then given by equation (22). 

, J =  1.3 × 10-5[(3)] moldm -3 s -1 (22) 

Table 1 presents the experimental data 1 for M, co and 
CxX/M together with calculated values of J ,  f (equation 
20), Po, P,, F(i), F(Po/2), F(P,/2). Romani and Weale's 
value I for the transfer-constant of toluene C~ = 6.8 x 10- 4 
has been used. Uncertainties in this quantity have only a 
small influence on the calculations. 

Straight-line plots presented in the figures are least- 
square regression lines. Since errors introduced into plots 
based on equations (4) and (18) are disproportionately 
large when the two terms on the left have similar values, 
such plots include only 10 out of the 15 data points, 
corresponding to the largest 10 values of MJ1/2/~o or 
FM~¢l/2/o~. This will be illustrated later. 

Constant termination coefficient 
A plot of M~,¢l/Z/~o versus M / J  1/2 is given in Figure I, 

and shows that equation (3) is obeyed with 
kpmM/(.¢kt)l/Z~l, i.e. with k m very small. This is 
consistent with Figure 2 in which the left side of equation 
(4) is plotted against J 1/Z/M. The least squares line passes 
close to the origin indicating that kpm ~ 0 (cf. equation 19). 

Table 1 Experimental data and derived quantities (60°C) 

M 107J l 0~' (.o 
(mol dm -3) ( m o l d m - S s  -1) (mol dm 3 s - l )  IOaCxX/M ~ Po P. F(?) F(/5o/2) F(/5./2) 

0.50 1.814 2.99 11.7 16.8 33.0 23.8 0.8399 0.8371 0.7949 
0.75 1.814 4.54 7.446 25.7 50.1 36.5 0.8990 0.8953 0.8512 
1.00 1.814 5.48 5.311 31.7 60.4 45.7 0.9297 0.9225 0.8824 
1.20 1.814 7.33 4.243 41.9 80.8 60.2 0.9721 0.9665 0.9221 
1.50 1.814 7.98 3.182 46.9 88.0 68.7 0.9898 0.9798 0.9418 
2.00 1.814 10.40 2.115 62.2 114.7 92.3 1.0356 1.0222 0.9874 
2.50 1.814 12.80 1.476 77.7 141.1 116.8 1.0731 1.0566 1.0253 
3.00 1.814 14.50 1.047 89.7 159.9 137.0 1.0980 1.0780 1.0518 
2.00 0.241 2.91 2.115 117.0 241.5 159.9 1.1457 1.1515 1.0782 
2.00 0.482 4.55 2.115 95.7 188.8 134.9 1.1095 1.1070 1.0492 
2.00 0.723 5.80 2.115 83.4 160.4 119.8 1.0853 1.0785 1.0295 
2.00 0.964 6.93 2.115 75.9 143.8 110.3 1.0691 1.0598 1.0160 
2.00 1.203 7.94 2.115 70.4 132.0 103.2 1.0563 1.0452 1.0052 
2.00 1.685 9.89 2.115 63.5 1 ! 7.4 94.0 1.0390 1.0260 0.9903 
2.00 2.411 12.30 2.115 56.0 102.0 83.9 1.0183 1.0032 0.9725 
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The kinetic parameters evaluated from Figures I and 2 
with the aid of equations (3), (4) and (19) are given in 
Table 2. Using these we may calculate the ~o-M relation 
(constant J )  and o~- j  relation (constant M) from 
equation (2). These are presented in Figures 3 and 4 which 
show very good agreement between observed and 
calculated values. This latter is to be expected, since the 
data are fitted closely by equations (3) and (4), which are 
equivalent to equation (2). 

Size-dependent termination coefficient 
Figure 5 shows that a plot of F(r)MJl/2/o9 versus 

F(~)/J 1/z (equation 17) for the data in Table 1 has a 

lOO 
c ~  

8O 

~ 60 

3 qo 

~ 20 

0 
0 

Figure 1 
Table 1 
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e ,=  
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Figure 2 

, . , i . . . .  I . . . .  i . . . .  I , , . , i . . . .  
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Plot of data in Table I according to equation (4). Only 10 data 
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10-3 M1~ 112 (moll12dm-312sl/2) 

Plot of M-Jll2/m vs. M/.¢ li2 (cf. equation (3)) for data in 

1 / 2  points (those with the largest I0 values of M J  /co) are included (see 
text) 

distinct curvature, as would be anticipated if the term 
kmF(~)M/(Jkto) 1/2 on the left of equation (17) were not 
negligible. The intercept on the ordinate (k~/2/kp) is 
approximately 50 mol 1/2 dm- 3/2 s1/2. We have obtained 
consistent results by taking this intercept as 
49.0molt/2dm-3/2s ~/2. In general, evaluation of the 
precise value of k~ol2/kp involves iteration. The first value 
from equation (17) is used in equation (18) to obtain 
km/k~o/2. This is then inserted into equation (17) and the 
latter plotted to obtain an improved value of k~ol2/kp. The 
process is repeated until a satisfactory degree of 

15 

~ 10 

~E 
" o  

: 3  5 

0 . . . .  , , , , . . i . . . . .  i i i i , I , = , , , i 

0 0,5 1.0 1.5 2.0 2.5 3.0 3.5 

M (tool dm -3) 

Figure 3 og--M relation for J = 1.814 x 10- 7 mol dm - 3 s- 1 calculated 
from equation (2) with parameters in Table 2 (constant k,): experimental 
points 

15 

P~ 10 
e ~  

~E 

o 
E 
3 

% 5 

i i i . . . . . . . . . . .  

0 0.5 1.0 1.5 2.0 2.5 

107~ [tool dm-3s -1} 

Figure 4 e~-J relation for M = 2.0moldm- a calculated from equation 
(2) with parameters in Table 2 (constant k,): experimental points 

Table 2 Kinetic parameters (60°C) 

Parameter/kinetic procedures From F(~) From F(#o/2) From F(/~,/2) Constant k, 

kp (or 2 kp \ 102kl/-- i ~ 10 k~- ) (mol -i/2 dm 3/2 s -1/2) 2.0 2.0 2.2 1.5 
~ o  - - i  / 

103kf 10.1 9.1 11.1 3.3 
kp 

10'* kf ~ (mol_l/2dma/2 s_l/2) 2.1 1.8 2.5 0.49 1 0 " ~  or k~/Z] 

10 akr~ 3.6 3.1 4.1 0.13 
kp 

1 0 S ~ ( o  r - "  10 s kp,~ (mol_t/2 dma/2 s_l/z) 7.2 6.2 9.1 0.20 
k,o' t, kit i2 ) 
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consistency between the two equations (and a stationary 
value of 1/2 kto /kp) (Figures 6 and 7) is obtained. The 
resulting kinetic parameters, and also those based on 
F(P,/2) and F(/50/2) evaluated similarly, are presented in 
Table 2. 

Figures 8 and 9 indicate that the og-M and og-J  curves 
(equation 16) calculated from the F(r-) parameters agree 
well with the experimental observations. This is also true 
for the other sets of parameters in Table 2. 

Figure 10 is included to illustrate the sensitivity of 
equations (4) and (18) to experimental errors in 09. The 
three 'wild' points in this figure may be identified in the co- 
M curve in Figure 8 at M = 0.50, 1.0, 1.2 mol dm-~.  The 
highest point in Figure 10 (M = 0.50) would fall on the line 
if e~ were increased by 3.3~o, a discrepancy hardly 
significant in Figure 8. The amplification of errors in 
Figure 10 is thus evident. The dotted line is the regression 
line based on all fifteen points. We believe it is less 
accurate. 

If, for a given set of r values, F(~) is multiplied by a 
factor f, we see from inspection of equations (16)-(18) 
that the derived values of the parameters kp/k~o/2 , kf/k~o/2 
and kp~/k]o/2 are proportional to I/f, while kl/k p and 
kp,,/kp are invariant. It follows from our earlier discussion 
that simple use of the group termination coefficient as 
described produces errors which may be regarded as 
equivalent to the introduction of a factor into F, at least 

for the two examples referred to in equations (9) and (11). 
Thus when equation (6) applies the errors in k / k  ~/2 

p l  to ' 

kl/k~o/2 and kp~/k~o/2 arising in this way would be 
approximately 14 ~ .  Similar changes would result from 
changing the standard radical size from 50 to 
approximately 115. 

According to Table I F(~) > F(Po/2) > F(/~./2) and from 
the above remarks we might expect each of the derived 
parameters kp/klto/2, kf/k~o/2 to have values in the reverse 

3 0 0  

~' 250 

"~ 200 

i ' ~  ~ 1 5 0  

I00 
4 

50 

= I i I = I I 110 112 I 
2 4 6 8 14 

103 F(F)M/a/1/2 (tool 1/2dm-3/2st/2) 

Figure 7 Plot of data in Table 1 according to equation (17) (F=-F(~)) 
with parameters in Tables I and 2 (size-dependent kt) 
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order for the three sets of F values. This order is not 
manifest in the data of Table 2, probably because 
corresponding F values in the three sets are not accurately 
proportional over the range. 

The results described (Figures 3, 4, 8, 9) show that the 
data of Romani and Weale 1 can be fitted, probably within 
experimental error, by mechanisms based on degradative 
addition kinetics involving either constant or size- 
dependent k r The evaluated kinetic parameters are 
different in the two cases (Table 2), the main difference 
lying in the importance of re-initiation (equation le) 
which is virtually negligible when kt is constant. It thus 
becomes of interest to see whether additional information 
on this process can be obtained. In principle there are 
three possibilities. First, the most favourable conditions 
for kinetic observation of kpm are high monomer 
concentrations and low rates of initiation. (Thus, in 
Figures 2 and 6, evaluation of an intercept proportional 
to kp,, involves extrapolation of j1/2/M t o  zero.) In these 
circumstances, for 

(Jkt°)l/2 <~ 1 (23) 
FM(kp~+k:) 

the rate of polymerization (equation 16) becomes 

co=j,/2kp; + I ~ F M  + J,/2 k: 
k: kp~ + k: 

q-O•" ( '~kt° ) l /2  ~ 2 7  

(ff-M(k,., + kf)J 
(24) 

so that the o~-M plot tends to become linear, with slope: 

/ ' J 'xl /2 kvm (25) 
kpFt kto) kpm + k f 

and intercept (on co axis): 

Jkpk: 
(kpm+k:) 2 

It is assumed in the above that F is sensibly constant 
under the conditions mentioned. This is likely to be a 
good approximation because high degrees of 

polymerization and consequently large radical sizes will 
be favoured. According to equation (25), the slope is a 
measure of k w. For example, with the parameters (from 
F(F)), in Table 2, the calculated slopes for 
J = l . 8 1 4 x  1 0 - T m o l d m - a s  -~ are 2.6x 10-6s -1 and 
2.8x 10-7s -1 for size-dependent and constant k ,  
respectively (taking F(~)= 1.15, a little higher than the 
largest value in Table 1). The corresponding calculated 
intercepts are 9.8 x 10 -6 and 5.1 x 10 -5 mol dm -3 s -1, 
respectively. Unfortunately the experimental conditions 
in equation (23) would be difficult to realize even 
if k r is size dependent. With a maximum value 
of monomer concentration obtainable of about 
3 mol dm-  3 it would be necessary for 
,/t/l/2 <~ 8 X 10 - 4  and . / < 6 x  10-Tmoldm-3s  -1. 
Probably J = 6 x l 0 - g m o l d m - a s  -1 would be the 
highest acceptable rate of initiation which is 
approximately 25 9/0 of the lowest value in Table 1. Rates 
of polymerization would, therefore, be inconveniently, 
though not impossibly, low. However, to satisfy equation 
(23) for constant k t much lower values of . /  would be 
required (Table 2). 

The second possibility is that observation of the 
polymerization under heterogeneous conditions with 
precipitated polymer could provide information on kpm 2. 
It is possible under appropriate conditions for most of the 
radicals to react by degradative addition, with relatively 
little bimolecular termination. In this case, if k ~ = 0 ,  
radical occlusion (precipitation) will not produce a 
significant increase in rate of polymerization as 
commonly encountered in simple polymerizations. An 
appreciable enhancement of rate indicates a contribution 
from re-initiation. The experimental conditions required 
are Jl/2/FM<kf/klto/2 which as discussed above, is an 
inconvenient condition. 

The third possibility is that since each re-initiation step 
equation (le) leaves a residual vinyl double bond in a five- 
membered ring, re-initiation could be estimated, in 
principle, from the double bond content of the polymer. 
The fraction ¢ of S" radicals formed which re-initiate is 

¢ - kpmFM (26) 
kpmFM + (Jk,o) 1/2 

and the ratio of the number of degradative additions to 
normal propagation is k:/kp. Hence the ratio of double 
bonds to monomer units in the polymer is 

c~ kt = k: kp.,FM 
kp kp kp,,FM + (./k,o) 1/2 (27) 

This quantity, like those discussed above, depends on 
Jl/1/FM, but it is obviously less than kf/k v, or about 1 
(Table 2). In the most favourable case in Table 1 
(M= 2.00mol dm -3, J = 0.241 × 10- 7 mo l d m-  3 s -1) 
the content of double bonds estimated from equation (27) 
is 0.53 ~o (calculated from F(F)). Some of the double bonds 
remaining may be consumed by subsequent grafting or 
cross-linking reactions. 
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In the fol lowing P ,  represents  the concen t ra t ion  of 
po lyme r  chains  with r m o n o m e r  units  formed in t ime t. 
We  have included non-deg rada t ive  t ransfer  to species X,  
with rate  coefficient ky~ and transfer  cons tan t  C~: 

R ; + X ~ P , + X "  

X ' + M ~ R  i 

kfx 
(29) 

To avoid  heavy a lgebra  it is convenient  to express 
quant i t ies  in terms of  the measurab les  co, J as far as 
possible.  W e  then find: 

09 1 1 
R ; =  k ~ (  - ~ ) ~ ' -  

(30) 
k y M  k y M  r 1 

S ; =  R ; =  - -  R i ~  - kmM + (,ffkt) 1/2 kpmM + ( Jk t )  x/2 

r>>, l 
where  

kpmM(kpM + k f M )  + k p M ( J k t )  1/2 
c~= (31) 

{kpM + k y M  + kyxX  + (Jk,)~/2}{kp, ,M + (Jk01/2 } 

Proceed ing  in the conven t iona l  fashion we have 

k r - 1  r - - 1  k 

d P , _ . .  ~ R; sR; + kt Z R; ~S~ + " Z S ;  ~S~ + k f x X R ;  
d t  2s= 1 - s=~ - 2 - 

(32) 

which, with the a id  of equa t ion  (30) and some 
man ipu la t ion ,  becomes  

dP,  ~¢ 2 X 
d t - 2  ( r - 1 ) ( 1 - x ) 2 ~ -  + C : ' M  ° ) ( 1 - c ~ ) ~ - I  (33) 

Hence,  under  s t a t ionary  condi t ions ,  we ob ta in  the 
required d i s t r ibu t ion  

~¢ t A M  c~Xco(  1 - ~)c( -  1 P r = ~ - ( r -  1)(1 - x ) 2 ~  ' - 2  + (34) 

since o o t = A M ,  the to ta l  concen t ra t ion  of m o n o m e r  
polymer ized .  

To calculate  the second and th i rd  mome n t s  of the 
d i s t r ibu t ion  we no te  that  with the ' long chain '  
app rox ima t ion ,  k p M > ~ k f M + k f x X + ( J k t )  1/2, so that  
equa t ion  (31) gives 

J X 
1 - = = ~ + c x ~  (3 5) 

A P P E N D I X  1 

Molecular  weight distributions 

Calcu la t ion  of the d i s t r ibu t ion  for cons tan t  k t and  
effectively cons tan t  [ M ]  and  J m a y  be carr ied  out  by 
conven t iona l  me thods  with the a id  of a small  
modi f ica t ion  in equa t ions  ( ld ,e)  so tha t  these become 

The first three m o m e n t s  are  presented  in equa t ion  (36) 

J t  X 
Pr = - -  + A M C x - -  

2 M 

~3 

Z r P , = A M  (36) 
1 

R; + M---, S; (28a) 

S, + M--* R; + a (28b) 

W e  es t imate  er rors  so in t roduced  to be  of  the o rde r  1%. 

X 
A M ( 3 J  + 2 C x ~ o ) ~ o  

Er 2Pr-- 

P O L Y M E R ,  1 9 8 9 ,  V o l  30 ,  M a r c h  5 4 7  
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Thus 

oo 

rP, A M  o9 
f t . -  ! - - (37) 

J t  X J X 
~'P" 2 - + A M C ~ M  2 ~-Cx-Mo 
1 

or  

1 J X 
- I- CxT-; (38) P. 2~o 5/1 

~r2p,  ~o 3 J + 2 C x  

/ g w - -  1 

1 

(39) 

Hence 

X X 

/5,, 2 ( J +  cxXco) 2 
(40) 

so that the heterogeneity ratio has the values 1.5 and 2.0 
for negligible and dominating transfer, respectively, as in 
conventional free-radical polymerization with termi- 
nation by combination. Re-initiation does not play any 
distinguishable part in these calculations. 

APPENDIX 2 

Radical attack on acenaphthylene: molecular orbital 
calculations 

The reactivity of acenaphthylene towards radicals was 
examined by semi-empirical MO theory using the AM 1 so 
method as implemented in the MOPAC program 31'32. 
Radicals were treated as doublets in a restricted Hartree- 
Fock approach. Thus contamination by higher spin 
states was not permitted and comparisons amongst the 
molecules would be more meaningful. Methyl radical was 
chosen as a model for the attacking radicals. 

Enthalpies of reaction for radical addition and 
hydrogen abstraction at sites 1 and 8 were calculated and 
are compared (Table A1) with attacks on ethylene. The 

radical additions are clearly favoured over hydrogen 
abstraction and CH~ addition to site 1 is 16 kcal/mol 
more exothermic than addition to site 8. Thus the 
stability of the radical formed by addition at site 1 makes 
that the preferred site for attack if the process is under 
thermodynamic control. 

If kinetic control is operative, one would ideally wish to 
look at activation energies for forming the activated 
complexes. This is exceedingly difficult, but a reasonable 
comparison of the reactivity at possible sites can be 
obtained from Fukui indices 33. Here the Fukui index at an 
atom a acting as an electrophile being attacked by a 
nucleophile with a HOMO energy Era is given by 

FE,,o= X X n'C 2"' 
I=HOMO+I J,atoma Ei--Eref 

where ni= 2 for closed shell systems, Cj.i is the coefficient 
of AOj  in the expansion of MO i and E i is the energy of 
orbital i. It is essentially a measure, MO by MO and 
weighted by the energy gap, of the amount of electron 
density that could be accepted at the given atomic centre. 
These indices are often dominated by the frontier orbitals, 
and for a molecule being attacked by a radical the LUMO 
density at each site may be a sufficient indicator of site 
preference 34. Table A2 lists the indices for neutral 
acenaphthylene; they all indicate that there are many sites 
of comparable reactivity towards radical addition. 

We also wanted to examine the ability of the product 
radicals to sustain chain growth (i.e. to act as nucleophiles 
in attacking acenaphthylene). Table A3 lists the Fukui 
nucleophilic indices (FN=) and LUMO densities for these 
radicals. 

Thus radical addition at site 1 produces a radical that 
could be expected to sustain chain propagation much 
more effectively than would the radical formed by 
addition at site 8. 

Table A2 Reactivity indices 

Site 1 5a 6 7 8 8a 8b 

Neutral parent 
FEI 0.66 0.64 0.70 0.64 0.70 0.66 0.63 
FEI(LUMO) ~ 0.11 0.00 0.15 0.04 0.12 0 . 1 1  0.00 
LUMO density 0.22 0.00 0.28 0.06 0.24 0.20 0.00 

= LUMO contribution 

Table A3 Reactivity indices for radicals 

Site 2 3 8a Table A1 Heats of reaction (kcal mol-1), calculated, gas-phase 
conditions 

CH~ additions 
to ethylene - 37 
to site 1 - 4 3  
to site 8 - 2 7  

H abstraction by CH~ 
from ethylene + 6 
from site 1 + 22 
from site 8 + 15 

CH~ added at site 1 
FNu a 0.43 
LUMO density 0.82 

CH~ added at site 8 
FNu 0.09 
LUMO density 0.19 

0.08 

0.27 
0.06 0.60 

a Here the summation is over the occupied orbitals; occupancy is 1.0 for 
the half-filled orbital and the reference energy is the LUMO of 
acenaphthylene 
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